
Department of Informatics
University of Leicester

CO7201 Individual Project

Final Report
Comparit - A Syntactic and Semantic

Model Comparison Tool

Jawad Mustafa
jm982@student.le.ac.uk

239036872

Project Supervisor: Dr. Artur Boronat
Second Marker: Dr. Furqan Aziz

September 6th, 2024
Word Count: 10885

DECLARATION:
All sentences or passages quoted in this report, or computer code of any
form whatsoever used and/or submitted at any stages, which are taken from
other people’s work have been specifically acknowledged by clear citation of
the source, specifying author, work, date and page(s). Any part of my own
written work, or software coding, which is substantially based upon other
people’s work, is duly accompanied by clear citation of the source, specifying
author, work, date and page(s). I understand that failure to do this amounts
to plagiarism and will be considered grounds for failure in this module and
the degree examination as a whole.

Name: Jawad Mustafa
Date: September 6th, 2024

1

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my su-
pervisor and mentor, Dr. Artur Boronat, for their invaluable guidance, con-
tinuous support, and patience throughout this research. Their expertise and
insight have been fundamental to the success of this work, and I am im-
mensely grateful for the countless hours they dedicated to refining my ideas
and improving the quality of this thesis.

I also want to extend my heartfelt thanks to my co-advisor Dr Furqan
Aziz for taking significant interest in my project, and for their construc-
tive feedback, challenging questions, and insightful suggestions that helped
strengthen my research.

I am deeply indebted to my family for their unconditional love and sup-
port. To my parents, Dara and Saeeda, my cousin, Ghazanfar, Fizza, and
little Azlan, thank you for your constant encouragement, belief in me, and
understanding during the demanding periods of this journey.

Finally, to my friends, Shiraz and Khawaja, and loved ones, thank you for
your patience, positivity, and support, which helped me persevere through
the toughest moments. Your understanding, especially when I was consumed
by this research, means the world to me.

This thesis is dedicated to everyone who has contributed in some way to
the successful completion of this work.

Thank you all!

2

Abstract

Model matching or model differencing is the process of comparing software
models and reporting the degree of similarity between them. Model Com-
parison tools are used in the field of Model Driven Engineering and Model
Driven Reverse Engineering to gain insights and perform analysis on soft-
ware systems. We investigate the existing model comparison approaches,
identify their gaps, and propose a mature IDE-agnostic model comparison
tool named as ”Comparit” with configurable granularity of comparison that
could help further research in MDE and MDRE by allowing for comparison
of model pairs. In addition to that, we provide an interface that could be
implemented to accommodate a variety of model comparison algorithms. To
assert the credibility of our tool, we have used an elaborate testing scheme.
YAMTL (Yet Another model transformation language) is used to create mu-
tants of models; each mutant labeled with the correct metrics. The test
dataset is used to evaluate the credibility of the proposed tool.

3

Contents

1 Introduction 6

2 Literature Review 9
2.1 Research Questions . 9
2.2 Search Strings . 10
2.3 Review of Model Comparison Techniques 10
2.4 Review of Evaluation Techniques for Model Comparison Al-

gorithms . 15

3 Objectives 17

4 System Specification 18
4.1 Use Cases . 18
4.2 Component Diagram . 20
4.3 Deployment Diagram . 21
4.4 Sequence Diagrams . 22
4.5 Understanding Codebase: Class Diagrams and Directory Struc-

ture . 24
4.6 Summary of Technologies Used 29
4.7 Steps to Run . 29

4.7.1 System Requirements 30
4.7.2 Steps to run using docker compose 30
4.7.3 Steps to run in Development Environment 31

4.8 Python Adapter to use the API 32

5 User Interface 34
5.1 Home . 34
5.2 Compare Models . 34

4

5.3 Bulk Comparison . 35
5.4 Model Conversion . 35

6 Algorithms 36
6.1 Hashing Based Comparison 39
6.2 Digest Based Comparison . 43
6.3 Semantic Similarity . 43

7 Case Study 44
7.1 Source Code and its Ecore Model 44
7.2 Modisco Model . 46
7.3 Comparison using Comparit 47

8 Evaluation 55
8.1 Methodology . 55
8.2 Benchmark Dataset . 55
8.3 Results . 59
8.4 Steps to Reproduce Evaluation Results 63

9 Conclusion Future Works 66

5

Chapter 1

Introduction

Software models are abstract representations of a software system that help
understand the design and behavior of different components in a software
system. They serve as blueprints for the development of new systems and
as documentation for a project that could be used by newcomers to gain
familiarity with the internal functioning of the system.

Software models are generally categorized into Structural Models and
Behavioral Models; The former serve as representatives of the data model;
showcasing classes, attributes, methods and their relationships while the lat-
ter capture the flow of information in the system and depict the interaction
of components and sequence of events.

There are various modelling languages and frameworks for software mod-
elling including and not limited to: Eclipse Modelling Framework (EMF) [9],
UML [16] and Moose [3]. These frameworks allow users to create and edit
software models via code as well as drawings. The source code of the dia-
grams opens doors for code generation and automated software analysis. For
example, EMF contains the feature to generate code from ecore models. On
the contrary, Modular Moose, Papyrus and Modisco can be used to convert
java projects to Moose Models.

The comparison of software models is a fundamental task in MDE (Model
Driven Engineering) and MDRE (Model Driven Reverse Engineering) re-
search, essential for various purposes such as software evolution, model-driven
development, model clone detection, and quality assurance. Model Compar-
ison tools can assist researchers working in the field of MDRE to validate
the results of their reverse engineering algorithms by comparing them with
baseline models. When it comes to software evolution and quality assurance;

6

model comparison tools can help track changes between different version of
software.

There are two aspects of model comparison; syntactic and semantic. Syn-
tactic comparison focuses on the structural similarity between models, dis-
regarding semantic aspects, and plays a crucial role in identifying similarities
and differences between different versions of models or models created by
different stakeholders. Semantic comparison focuses on the resemblance
of two models with respect to their meaning or semantics. From the per-
spective of MDE, this could help identify model clones and aid with model
versioning. Additionally, semantic comparison of models could automate the
grading of software based assignments in academia; extracted models from
the student’s work could be compared with the benchmark models to check
the validity. This would not be the same as plagiarism detection, because
the student might have chosen a different coding style to achieve the required
semantics.

Somogyi [22] defines two goals for model comparison frameworks:

• Accuracy: Refers to how accurately the algorithm captures the differ-
ences. The accuracy could be gauged by several evaluation techniques
for model comparison algorithms such as utilizing model generation to
create benchmarks for evaluation [14].

• Generality: Refers to how adaptable the algorithm is for a variety of
modelling languages.

There exist multiple model comparison algorithms that would be detailed
in the literature review of this report. Kolovos et al. [13] categorizes these
algorithms into four types:

• Static Identity-Based Matching: This method relies on persistent
and non-volatile unique identifiers associated with model elements, usu-
ally in the form of universally unique identifiers (UUIDs). While static
matching ensures accuracy by always providing determinable matches,
it may encounter difficulties when attempting to generalize to more
complex modeling languages due to its dependence on unique identi-
fiers.

• Signature-Based (Dynamic) Matching: Pre-selected subset of model
features are used to compute signatures, and the signatures are com-
pared to determine model similarity.

7

• Similarity-Based Matching: Differing from previous approaches,
similarity based algorithms do not yield a binary yes or no answer to
match queries. Instead, a degree of similarity is computed, providing
fuzzy comparison.

• Custom Language-Specific Matching: These algorithms are tai-
lored to specific modeling languages, utilizing the particular semantics
of the language for matching. While such algorithms offer high accu-
racy, they lack generality.

In this paper, we propose an IDE-agnostic model comparison tool named
as ”Comparit” that allows the user to choose the type of matching; similarity
based or signature based, and specify the similarity threshold, modelling
language of the models to be compared, and the granularity of comparison.
The granularity of comparison refers to the elements that should be included
in the computation of syntactic similarity. The comparison would result in
the computation of metrics that reflect the degree of syntactic similarity;
precision, recall, and f1-score, and semantic similarity.

Paper organization: Chapter 2 discusses the state-of-the-art model
comparison techniques and how they could be improved. Additionally, exist-
ing evaluation techniques of model comparison algorithms is discussed later
in the chapter. Chapter 3 enlists the objectives of this tool in light of the lit-
erature review. Chapter 4 presents the architecture of our model comparison
tool using descriptive diagrams. Chapter 6 explains in detail the algorithms
used for model comparison in our tool followed by Chapter 6 that contains
the workflow of the user-interface. Chapter 7 demonstrates a case study car-
ried out using Compair, followed by Chapter 8 that presents the evaluation
methodology and corresponding results for our tool. At the end, we conclude
and provide a list of actionable items with regards to this tool for the future.

8

Chapter 2

Literature Review

In this literature review, we explore state-of-the-art model comparison tech-
niques; focusing on the granularity aspect, evaluation methodology and the
challenges associated with model comparison. We identify gaps in the liter-
ature and opportunities for innovation in this domain.

2.1 Research Questions

The research questions were formulated to incorporate an understanding of
existing work related to model comparison. The following questions allow us
to navigate the literature to find existing model comparison tools and the
challenges associated with their usage and evaluation.

• RQ1: What are the common challenges faced by state-of-the-art model
comparator tools when comparing Ecore and UML2 models, and how
does the proposed tool address these challenges?

• RQ2: What are the performance implications of using the proposed
comparator tool in large-scale model comparison scenarios?

• RQ3: What metrics and criteria should be used to evaluate the effec-
tiveness and accuracy of model comparison tools? (This could be an
entirely new area: ‘evaluating model comparator tools’)

• RQ4: What metrics can be representative of the syntactic and semantic
similarity of two models?

• RQ5: How can text-based matching help with model comparison?

9

2.2 Search Strings

The following search strings were created in accordance with each research
question to explore relevant articles. These strings were used on google
scholar and ACM to find existing literature:

• Query String for RQ1: ”(challenges OR problems) AND (””model
comparison”” OR ””model matching””OR ””model alignment””) AND
(””software engineering”” OR ””software development”” OR ””Model
Driven Engineering”” OR ””Model-Driven Engineering”” OR ””Model-
Driven Reverse Engineering”” OR ””Model Driven Reverse Engineer-
ing”” OR ””MDRE”” or ””MDE””) ”

• Query String for RQ2: (”Ecore” OR ”UML”) AND (”model com-
parison” OR ”model matching” OR ”model alignment”) AND (perfor-
mance OR runtime OR ”run time” OR ”run-time” OR scalability)

• Query String for RQ3:(”metrics” OR ”criteria”) AND (”evaluation”
OR ”assessment” OR ”measurement”) AND (”Ecore” OR ”UML”)
AND (”model comparison” OR ”model matching” OR ”model align-
ment”)

• Query String for RQ4: (”metrics” OR ”criteria”) AND (”syntactic sim-
ilarity” OR ”semantic similarity”) AND (”Ecore” OR ”UML”) AND
(”model comparison” OR ”model matching” OR ”model alignment”)

• Query String for RQ5: (”text-based” OR ”textual”) AND (”model
comparison” OR ”model matching” OR ”model alignment”) AND (”soft-
ware engineering” OR ”software development” OR ”Model Driven En-
gineering” OR ”Model-Driven Engineering” OR ”Model-Driven Re-
verse Engineering” OR ”Model Driven Reverse Engineering” OR ”MDRE”
or ”MDE”)

2.3 Review of Model Comparison Techniques

There have been several systematic literature reviews [[13] [17] [22]] done on
existing techniques for model matching; be it syntactic or semantic. The
latest systematic literature review was done by Somogyi [22] in 2019 that
analyzes 72 model matching algorithms to find that 8 of them are text-based,

10

while the other 64 are graph based algorithms. The text-based algortihms
refer to raw text differencing or the XML based serialization of models.

Below is the summary of text baed algorithms surveyed by Somogyi [22]:

• Badreddin et al [4]: The goal of this tool was to provide textual differ-
encing between models similar to a version control system.

• Alwanain et al [2]: Used for comparison of sequence diagram based on
Alloy; a modelling tool.

• Maoz et al. [15]: is a semantic differencing operator for UML class
diagrams. The tool works for models based on Alloy language. The
authors have mentioned the application of semantic differencing on
models based on other languages as future work.

• Foucault et al. [10]: The matching algorithm is baesd on static iden-
tifiers. The algorithm is specific to EBNF based modelling language.
The author of the literature review remarks that while the algorithm
aims to achieve both accuracy and generality, it is limited in the latter
due the usage of static identifiers.

• Somogyi and Aztalos [21] [20]: The algorithm compares and merges
text based models. The algorithm provides generality by allowing the
user to specify he parser for the text-based models. The matching
process depends significantly on the parser. The parser must meet sev-
eral algorithmic requirements, which involves some configuration effort.
However, this setup allows the algorithm to achieve both accuracy and
generality.

• Barrett et al. [5]: The algorithm proposed by Barrett et al. [19] is
designed for merging use case models provided in textual form, where
use cases are typically described in natural language. This operation-
based algorithm tracks changes as they happen, eliminating the need for
explicit model matching. It involves constructing finite state machines
from the textual descriptions, which are then utilized in the merging
process. The authors emphasize the accuracy of merging textual use
case models, a problem that previously lacked a proposed solution, and
introduce a novel algorithm to address this challenge.

11

• Rozen and van der Storm [26]: The proposed algorithm employs stan-
dard textual differencing to track the origin between the textual rep-
resentation and the model. It is also operation-based, which means it
does not require explicit matching because it relies on operation-based
change tracking. However, it still uses raw text differencing for origin
tracking, specifically for mapping between text and model. The algo-
rithm is implemented in Rascal, and a parser is used to parse text into
an abstract syntax tree. The authors highlight a notable issue in text-
based model matching: non-semantic information (such as comments)
can impact the algorithms and must be managed appropriately.

• Rivera and Vallecillo [18]: Text-based algorithms baed on Maude are
compared using static identifiers and similarity metrics.

The individual description of the graph-based model comparison algo-
rithms have not been discussed by Somogyi [22] due to space limitations.
The general comments about graph-based algorithms suggest that there is
more variety in graph-based algorithms compared to text-based algorithms.
25% of the algorithms are focused on generality, 22% 42 on accuracy, 22%
on both accuracy and generality. As a part of this review; we discuss the
most popular graph-based algorithm; EMF-Compare and draw inspiration
for our tool. The key findings of the review are summarized below. Our
tool is designed to specifically address the second, third, and fourth points
of these findings.

• To assess the effectiveness of matching algorithms, metrics such as pre-
cision, recall, and F-score - commonly used in pattern recognition - are
employed to measure matching accuracy. These same metrics can also
be applied to evaluate the accuracy of conflict detection and resolution.
Additionally, performance and scalability are important considerations,
although large-scale models often receive less attention in this regard.

• Another significant challenge in model matching is the absence of au-
tomated benchmarking. A pressing need exists for the development
of technology-independent benchmarking model datasets that can be
automatically generated, thereby addressing this longstanding issue in
the field.

• The field of model matching suffers from a scarcity of empirical studies,
which are essential for verifying certain aspects of an algorithm, such

12

as the human effort required to use it, that would be challenging to
quantify otherwise.

• Another significant limitation is the lack of technology-independent
evaluation frameworks for model matching algorithms. While some
evaluation frameworks do exist, they are often tied to specific tech-
nologies, which can hinder their broader applicability.

Somogyi [22] enlists open questions that open doors for future research.
Some of the questions that are particularly helpful for us to set the direction
for our project are as follows.

• Absence of a mature tool: Most of the model matching algorithms
have a working prototype but the existence of mature tools is rare.

• Semantic Model Matching: The independent semantic matching of
models as well as semantic matching informed from syntactic differences
is a new research direction.

• Large-scale model matching: There is room for research when it
comes to optimization of matching algorithms with minimal compro-
mise on accuracy.

Based on the literature review done by the author in 2019, they have
proposed a text-based model differencing and merging algorithm [23]. Since,
it is an MDM (Model Differencing and Merging) algorithm, it consists of
two fundamental phases; model matching phase, and model merging phase.
The AST matching phase involves pairing subtrees that represent the same
elements in Abstract Syntax Trees (ASTs) of two models. This process uses
the ”same-level heuristic,” prioritizing subtree matches on the same level be-
fore moving to deeper levels, as matches are commonly found at the same
level. The algorithm takes two ASTs as input and produces matched pairs
(MP) and unmatched subtrees. It uses the ”IS MATCH” operation, which
is considered to be an external operation that could utilize any matching
technique (similarity based, static matching, etc), to determine if subtrees
are pairs. The algorithm first checks if the entire ASTs match; if not, it
terminates. It then recursively matches children subtrees, avoiding retries of
previously tried pairs to enhance performance. The author also describes a
”MATCH ASTS” operation, which attempts to match children subtrees on

13

the same level, using the IS MATCH operation. For optimal performance, the
children that have already been matched are stored in a cache to avoid redun-
dant matching. After completing MATCH ASTS, the algorithm gathers all
unmatched subtrees and attempts further matching among them. Matched
pairs can be labeled, allowing AST traversal in linear time using methods
like Depth-First Search (DFS).

The algorithm proposed by Somogyi [23] exists as a proof of concept and
the paper mentions that there is a need for the development of a mature tool
that implements the algorithm.

In the light of the literature review conducted by Somogyi [22], Xiao He
[12] enhanced the comparison mechanism of EMF-Compare by introducing
the idea of hashing.

EMF Compare is a state-of-the-art generic model merging tool based on
the Eclipse Modeling Framework (EMF). Its workflow comprises four major
steps:

1. Model Resolving: Loading models from files.

2. Match: Computing match results.

3. Diff : Differencing models based on match results.

4. Post-process: Refining the comparison.

EMF-Compare compares model elements using a 2-step process. Firstly,
potential candidates for a model element are compared by finding the edit
distance between model elements. A set threshold is used to compute can-
didate pairs. The second step is the double-check stage where the model
element that is closest to the base element qualifies as a match.

Xiao He [12] has mentioned two types of hashing; Similarity-preserving
hashing, and Integrity-based hashing.

Similarity-preserving hashing maps data to numerical hash values.
Examples of Similarity-preserving hashing are SimHash [19] and MinHash
[7]. These generated hashes of two models can be compared using Cosine
Similarity, Jaccard Similarity, and Sorensen Similarity.

Integrity-based hashing refers to techniques including cryptographic
hashing algorithms. This hashing approach is used in cases where there is a
high chance of hash collisions, which is rare in the case of model comparison.

Xiao He has used a combination of these two types of hashing approaches
to propose a dual-hashing-based model matching algorithm; an extension of

14

EMF-C. ”HMo”, addressed as the similarity-preserving hashing algorithm;
iterates through the model to get the model elements and computes the hash
of individual features. The model element’s hash is weighted sum of the
individual 64-bit hashes of each feature of the model element. The mechanism
to compute a hash for features that represent a name is to compute the
hash of individual NGrams of the feature. ”Hchk” has been labelled as the
Integrity-based hashing algorithm; it is used for the computation of of the
checksum of a collective string of the features.

To briefly put the entire algorithm in picture, Xiao He [12] selects a query
element ”Q” for which a match is to be found. The candidtes are filtered
out using the S-hashes (computed using HMo). The filtered candidates are
double checked to find the closest match for each query element. In-order
to speed up the algorithm; the distances are cached corresponding to the
”C-Hashes” (Compute using Hchk) of the element to avoid redundant com-
putations.

As a result of introducing hashing to avoid the tedious task of comparing
raw elements, [12] was able to succeed in surpassing the performance bench-
mark set by EMF compare. As a part of future improvements, the author
has suggested using semantic word embeddings; such as word2vec in place of
”hashNGram” function used in the computation of HMo.

While several approaches exist for syntactic model comparison, a common
challenge is the lack of granularity in the comparison process. Existing tech-
niques often provide limited control over the level of detail considered during
comparison, leading to either oversimplified or overly complex results.

2.4 Review of Evaluation Techniques for Model

Comparison Algorithms

Another challenge in field of model comparison is the evaluation of the algo-
rithms used. There are existing works that explore this topic, and suggest
possible methods of evaluation of model comparison approaches.

Lorenzo [1] talks about evaluation of existing model comparison tools.
The author points out the fact that existing literature contains a multitude
of model matching algorithms but there is an absence of systematic eval-
uation. To address this issue, the author has proposed a way to evaluate
model comparison algorithms in a systematic fashion. This is achieved by

15

creating model comparison benchmarks. This is achieved using the proposed
tool in the paper called Benji[14]; that allows for the specification of the
preconditions, actions, and post conditions to produce mutants of a model.

Xiao [12] has developed a mutator as well, to create mutants of model
elements that can be used to evaluate model comparison tool.

Brand [25] has suggested a method for assessing the quality of model com-
parison tools by using model generation to produce benchmark data. They
have performed evaluation of pairs generated by mutators for model elements
individually which could prove to be challenging when specifying benchmark
datasets for evaluation. Additionally, their evaluation is restricted to at-
tributes and references. They have curated a benchmark dataset by amalga-
mation of manually defined data, and generated data using model mutator.
The manually defined dataset has been created by developers who manually
identified the differences between models. This data set could have been
valuable but it does not exist at the given URL1 in the paper anymore.

There are several other eclipse-based evaluation tools [[11]] [24]]. The
takeaway from the approaches described in these evaluation tools is that we
can use precision, recall, and F-Score as metrics for the evaluation.

1http: //www.win.tue.nl/ zprotic/benchmark.html

16

Chapter 3

Objectives

In the light of the literature review; we have identified the following key
objectives for the model comparison tool:

• API endpoints that returns metrics obtained as a result of syntactic
and semantic model comparison: The APIs will be dockerized and can
be plugged into any system; thus achieving the goal of a technology
independent tool for model comparison.

• A configuration file to specify the granularity of comparison for syn-
tactic similarity. The configuration will allow the user to specify the
elements, as well as their features that merit comparison for the par-
ticular usecase.

• Model Conversion from Ecore to Emfatic, Emfatic to Ecore, and UML2
to Ecore to provide interoperability between these 3 modelling lan-
guages.

• A benchmark dataset constructed using the model transformation tool
[6]. The dataset will contain triples (model1, model2, syntactic met-
rics), that will help us gauge the accuracy of the model comparison
tool.

• Generate visualizations for the metrics obtained after comparison: Sep-
arate visualizations for comparison of a single pair of models, as well
as bulk of pairs.

17

Chapter 4

System Specification

This chapter describes in detail the working of the model comparison tool.
We begin with the discussion of the architecture; broken down into usecases in
4.1, Component Diagram in 4.2, and Deployment Diagram in 4.3, followed
by sequence diagrams in 4.4 that capture the flow of information in the
system. Later, we present a class diagram representing the structure of the
key components in 4.5. At the end of this chapter, we describe the choice of
technology, steps to deploy the project, and run it locally for development
purposes.

4.1 Use Cases

Figure 4.1 shows the usecases of the comparit user inteface. The description
of the usecases is as follows:

• Compare a single pair of Ecore/Emfatic/UML2 models: The
user should be able to input a pair of valid models to be compared.
As an extension of this usecase, the user should be able to specify the
granularity of comparison. For example, if the user wants to compare
two ecore models such that they want to match elements based on a
defined subset of features (name and type); the user should be able to
specify the granularity.

• View Comparison Results: The user should be able to see detailed
results of comparison including precision, recall, f1-score of the resulting
comparison.

18

• Bulk Comparison: The user should be able to input a zip folder
containing pairs of ecore/emf/uml models and get aggregate as well as
individual comparison results for the uploaded models.

• Ecore to Emfatic: The user should be able to specify a valid ecore
model and get the corresponding emfatic model. While this usecase is
not directly related with model comparison, this helps facilitate analysis
of models.

• Emfatic to Ecore: The user should be able to specify a valid emfatic
model and get the corresponding ecore model.

• UML2 to Ecore: The user should be able to specify a valid UML2
model and get the corresponding ecore model.

Figure 4.2 depicts how the user could interact with the API of the tool.
The description of the usecases is as follows:

• Make a POST Request to syntactic Comparator: The user
should be able to send a pair of valid ecore/emfatic/uml models along
with a configuration file as a POST request to the syntactic comparator
endpoint and obtain comparison results.

• Make a POST Request to Semantic Comparator: The user
should be able to send a pair of valid ecore/emfatic/uml models as
a POST request to the semantic comparator endpoint and obtain com-
parison results.

• Make a POST Request to get Emfatic from Ecore: The user
should be able to attach a valid emfatic model in a POST Request to
the API endpoint and get the corresponding Ecore model.

• Make a POST Request to get UML2 from Ecore: The user
should be able to attach a valid UML2 model in a POST Request to
the API endpoint and get the corresponding Ecore model.

• Make a POST Request to get Ecore from Emfatic: The user
should be able to attach a valid ecore model in a POST Request to the
API endpoint and get the corresponding Emfatic model.

19

Figure 4.1: User Interface Usecase

Figure 4.2: Api Usecase

4.2 Component Diagram

This section describes the components of our tool that help fullfil the re-
quirements specified in the usecases. The component diagram 4.3 identifies
3 main components that could be used by a ”Usage Script”; a script making
direct API calls to the endpoints, or a user interface.

• Semantic-comparator: Compares two emfatic models semantically.

20

• Syntactic-comparator: Compares two ecore models syntactically.

• Model-convertor: Allows for conversion of models to allow inter-operable
behavior.

Figure 4.3: Component Diagram

4.3 Deployment Diagram

The deployment diagram 4.4 showcases how the components have been pack-
aged. The ports contained in component diagrams for model-convertor and
syntactic comparator have been implemented as API-endpoints in a spring-
boot service. The port that allows communication with the semantic com-
parator has been implemented as an API endpoint in a Flask service. The
two services have been dockerized. Steps to obtain the docker images and run
them locally can be found in 4.7. To run the tool in production environments
where scalability and high availability is improtant, we recommend deploy-
ing the containers inside pods in a kubernetes cluster. In-order to accelerate
the process of comparison; we have segregated the semantic copmarator and

21

syntactic comparator; allowing for parallel computation of the two versions
of similarity.

Figure 4.4: Deployment Diagram

4.4 Sequence Diagrams

The sequence diagrams in this section depict the flow of information between
the user and the system.

Figure 4.5 describes the flow of events when the user inputs a pair of
ecore models, they are sent to model-converter to obtain the corresponding
emfatic models. The emfatic models are sent to the semantic-comparator
while the ecore models are sent to the syntactic comparator. The results
are then combined and returned to the user with the relevant visualizations
displayed on the user interface.

As described in figure 4.6, when the user inputs a pair of emfatic models,
they are sent to model-converter to obtain the corresponding ecore models.
The emfatic models are sent to the semantic-comparator while the ecore
models are sent to the syntactic comparator. The results are then combined
and returned to the user with the relevant visualizations displayed on the
user interface.

As described in figure 4.7, when the user inputs a pair of uml models,
they are sent to model-converter to obtain the corresponding ecore models.
The obtained ecore models are sent to model-convertor to obtain the cor-
responding emfatic models. After this, the emfatic models are sent to the

22

semantic-comparator while the ecore models are sent to the syntactic com-
parator. The results are then combined and returned to the user with the
relevant visualizations displayed on the user interface.

Figure 4.5: Sequence Diagram Ecore Model Comparison

Figure 4.6: Sequence Diagram Emfatic Model Comparison

23

Figure 4.7: Sequence Diagram UML2 Model Comparison

4.5 Understanding Codebase: Class Diagrams

and Directory Structure

In this section, we present the class diagrams for the springboot and flask
service. The class diagrams capture the architecture of the two services;
providing insight into how different components of the code work together.
Additionally, the diagrams depict the design patterns and best practices im-
plemented in the codebase. This section is particularly directed to researchers
and developers who are interested in contributing to this tool.

The following tree captures the directory structure of ”src” folder of the
springboot service (syntactic-comparator). We have followed the controller-
service-repository pattern to streamline data flow across the application from
the api to services. We do not have repositories because we do not maintain
user’s state.

src/

main/

java/

24

com/

mdre/

evaluation/

config/

Constants.java

controller/

EcoreToEmfaticController.java

EmfaticToEcoreController.java

HeartbeatController.java

ModelComparisonController.java

UML2ToEcoreController.java

dtos/

DigestConfigurationDTO.java

HashingConfigurationDTO.java

MatchedElementsDTO.java

ModelComparisonConfigurationDTO.java

MutantCreationDTO.java

VenDiagramDTO.java

schemas/

configuration.json

services/

modelComparisonService/

AbstractClassComparisonService.java

DigestService.java

EMFCompareService.java

HashingService.java

MetricsComputationService.java

ModelComparisonService.java

ModelElementsFetcher.java

ModelMutator.groovy

ModelMutatorJavaWrapper.java

YamlModelComparator.groovy

YamlModelComparatorWrapper.java

EcoreToEmfaticService.java

EmfaticToEcoreService.java

JsonSchemaValidatorService.java

UML2ToEcoreService.java

utils/

25

FileUtils.java

JSONtoDTOMapper.java

ModelComparisonUtils.java

Tuple.java

App.java

The entrypoint of the application is in src/App.java file. The springoot
application is loaded alongwith the controllers. The controllers contain the
implementation of endpoints defined in the component diagram in section
4.2. The controllers send the the request to the corresponding service. The
naming convention for controllers and services is such that it is intuitive for
programmers to infer the service called by a controller by looking at the
directory structure. For example, the ModelComparisonController calls the
ModelComparisonService and the EmfaticToEcoreController calls the Em-
faticToEcoreService.

The schema defined in the schemas folder is enforced on the configuration
file for granularity of comparison sent via the API. This is to ensure that
the API correctly hanldes cases when configuration files having unexpected
syntax are provided. The configuration schema is described in appendix table
9.1

The class diagram 4.8 represents the relationships, attributes and op-
erations of classes within the modelComparisonService package. To remain
concise in our explanation, we will only explain the ModelComparisonService
in the class diagram because this package contains the classes that define the
algorithms for model comparison. Later in Chapter 6, we will discuss the
implementation of the algorithms in detail.

The AbstractClassComparisonService class provides a blueprint for the
implementation of a model comparison algorithm. It can be extended to
provide implementations of different algorithms. For this tool, we have im-
plemented two algorithms; hashing based algorithm (explained in section 6.1)
and digest based algorithm (explained in section 6.2).

The ModelComparisonService class uses the algorithm based on the spec-
ified configuration; the configuration file comes from the controller. It uses
ModelElementsFetcher to fetch model elements. ModelElementsFetcher uses
YAMTLCounter; that extends from an external dependency ”YAMTL Mod-
ule” which is a powerful model transformation and manipulation tool. Apart
from using it for creating mutants, we use YAMTL for fetching elements as
well because it provides a convinient API to fetch all elements on model level.

The ModelMutator class uses Yamtl Module to create mutants. Section

26

8.2 explains how the model mutator is used to create a benchmark dataset.
The following tree captures the directory structure of the semantic-comparator.

Similar to the syntactic-comparator we have followed the controller-service-
repository pattern to streamline data flow across the application from the
api to services.

archive/

glove.6B/

glove.6B.50d.txt

GoogleNews-vectors-negative300.bin

controllers/

semantic similarity controller.py

services/

semantic similarity services.py

app.py

wsgi.py

The class diagram in figure 4.9 represents the relationships, attributes,
and operations in the semantic-comparator service. Depending on the con-
figuration of the algorithm at the time of starting the service, the embedding
model is chosen for converting emfatic models to vector embeddings. These
vector embeddings are used to compute cosine similarity betweeen the two
models.

27

Figure 4.8: Class Diagram for Springboot Service

Figure 4.9: Class Diagram for Flask Service

28

4.6 Summary of Technologies Used

The tool has been developed using an amalgam of technologies. We have
used Java, Groovy, and Python as the primary languages. Java and Groovy
have been used interchangeably to experiment with existing technologies and
to manipulate Ecore models in particular because of the rich EMF API that
is available as a Gradle/Maven dependency. Python has been used for rare
situations where the Java-based libraries shall not suffice. Each service that
is built as a part of this tool has been packaged as a microservice; Spring Boot
for Java/Groovy, and Flask for Python. These services are containerized so
they can be plugged into systems and readily utilized.

Diving deeper into some of the libraries that we have used:

• YAMTL [6]: A tool that comes packed with packages allowing us to
perform powerful transformations to obtain meaningful results. We
have used YAMTL to generate mutants for a vetted dataset of ecore
models to create a test dataset for evaluation. The evaluation chapter
expands on the creation of test data.

• Java UML2 [8]: Library used to convert UML2 models to ecore.

• EMF API: to traverse and manipulate Ecore models, convert Ecore
models to Emfatic and Emfatic to Ecore.

• Spring Boot: To develop Java-based services.

• Flask: To develop Python-based services.

• Streamlit: to develop the web interface.

4.7 Steps to Run

The services developed as a part of the tool have been packaged as docker
images and made public on docker hub. Table 4.1 describes the docker im-
ages. In this section, we will specify the system requirements, and the steps
to run the tool using docker-compose.

29

Image Name Tag Description
jawad571/comparit-
syntactic

1.0.0 Syntactic Comparator

jawad571/comparit-
semantic

1.0.0 Semantic Comparator

jawad571/comparit-
user-interface

1.0.0 User Interface

Table 4.1: Docker Images

4.7.1 System Requirements

• OS: Linux

• Memory: 2GB Minimum (4GB Recommended)

• Storage: 10GB

• Python version: 3.8

• docker-compose version: v2.17.2

• docker version: 27.1.1

4.7.2 Steps to run using docker compose

The docker-compose file’s contents listed below. If your system does not
have atleast 4GB of spare RAM, then we recommend setting the ”EMBED-
DING MODEL” environment variable for ”comparit-semantic” container to
”glove”. Glove is a light weight embedding model compared to the Google
News embedding model. Further details regarding the embedding models are
explained later in Chapter 6.

• Create a docker-compose file with the following contents

version: ’3.8’

services:

comparit-syntactic:

image: jawad571/comparit-syntactic:1.0.0

30

ports:

- "8080:8080"

comparit-semantic:

image: jawad571/comparit-semantic:1.0.0

ports:

- "9090:9090"

environment:

- EMBEDDING_MODEL=gnews

user-interface:

image: jawad571/comparit-user-interface:1.0.0

ports:

- "8501:8501"

environment:

- COMPARIT_SYNTACTIC_URL=http://comparit-syntactic:8080

- COMPARIT_SEMANTIC_URL=http://comparit-semantic:9090

• Run ”docker-compose up –build –pull always”

• Access the user-interface in your browser on ”localhost:8501”

4.7.3 Steps to run in Development Environment

To ensure that this project is easily extensible, we provide the details of
running this project in the development environment. The following steps
demonstrate how to run this project in development environment on a linux
system.

• Clone the repository 1. Note: This repository will be made public after
the dissertation has been graded.

• Enter command: ”cd syntactic-similarity”

• Enter command: ”./gradlew bootrun”. This will start the springboot
service on port 8080.

1https://github.com/jawad571/model-comparator

31

• Open new terminal and navigate to root directory of the project, then
enter command: ”cd semantic-simiarlity”. Create a folder named ”archive”
inside this directory. Download the google news word2vec embedding
model (GoogleNews-vectors-negative300.bin)2 in the archive folder. Cre-
ate a sub directory inside the archive folder and name it ”glove.6B”.
Download the glove.6B.50d.txt embedding 3 in this folder. You can
specify which embedding model you want to use in the .env file with
the variable name ”EMBEDDING MODEL”; that could hold two val-
ues ”gnews” and ”glove”.

• Enter command: ”python3 -m venv env” to create a new virtual envi-
ronment

• Enter command: ”source env/bin/activate” to activate the environ-
ment

• Enter command: ”pip install -r requirements.txt” to install the libraries
and then enter ”python app.py”. This will start the flask based service
on port 9090.

• Open new terminal and navigate to root directory of the project, then
enter command: ”cd user-interface”.

• Repeat steps 5-7, and run ”streamlit run main.py”. This will run the
user interface.

As a result of performing these steps, you should have 3 terminal windows
running syntactic-comparator on port 8080, semantic-comparator on port
9090, and user-interface on port 8501.

4.8 Python Adapter to use the API

We have written an adapter as a part of the user-interface that makes API
calls the springboot and flask services. Figure 4.10 showcases 5 functions;
one for each api defined in the component diagram. The adapter is decoupled
from the user interface and can be plugged into any software; and its functions
can be imported and readily invoked.

2https://github.com/mmihaltz/word2vec-GoogleNews-vectors?tab=readme-ov-file
3https://nlp.stanford.edu/projects/glove/

32

Figure 4.10: Python Adapter

33

Chapter 5

User Interface

In this chapter we describe the features of the interface.

5.1 Home

The homepage in appendix figure 9.1 features a drop-down menu that allows
the user to select from the various options and features that this tool offers.

5.2 Compare Models

In the drop-down, as show in appendix figure 9.2, there are options to com-
pare Ecore, Emfatic, and UML models. Upon the selection of any of these
options,the user can specify the models to be compared and select a config-
uration from the configuration panel as show in the appendix figure 9.3 that
displays the Ui as a result of selecting the ”Compare Ecore” option. A similar
user-interface can be seen for Emfatic and Ecore model comparison as well.
For ease of testing, sample models are provided. The ground truth model
and the predicted model are displayed side by side on the screen. Pressing
the ”Compare” button allows you to visualize the model-level metrics which
indicate how closely the predicted model matches the ground truth model.
A further breakdown of class-level metrics is also provided to analyze the
model’s performance in greater detail. This includes a comparison of pre-
dicted classes, operations, attributes, references, and supertypes as can be
seen in appenfix figure 9.4.

34

5.3 Bulk Comparison

This option can be chosen from the dropdown on the home page and allows
for the comparison of multiple model pairs simultaneously. The user interface
can be seen in appenfix figure 9.5. You can upload folders or select the
provided sample. Each folder should contain a base model and a predicted
model, which will then be compared. The type of base and predicted model
can be chosen according to your preferences from the available options (Ecore,
Emfatic, and UML2). The sample folder, downloaded as a zip file, can be
uploaded to test the tool.

After clicking the ”Compare” button, you can visualize metrics to assess
how well the predicted model performs relative to the ground truth. The
aggregate visualization section provides overall metrics for the bulk compar-
ison. Additionally, a CSV file is provided for inspecting specific model pairs.
From a dropdown menu in the individual pair visualization section, you can
select the specific pair you want to inspect, and metrics will be available for
that pair, similar to the previous individual model comparison options.

5.4 Model Conversion

The tool allows the user to compare models. The user can perform Ecore
to Emfatic, Emfatic to Ecore, and UML2 to Ecore conversion. Appendix
figure 9.7 shows how the ecore to emfatic conversion user interface looks like.
A similar interface is displayed for the other options as well. It should be
noted that the model to be converted must be syntactically accurate, or the
conversion may fail.

35

Chapter 6

Algorithms

In this chapter, we will abstractly define the algorithms that have been used
for syntactic and semantic comparison. Highlights of their implentation have
been showcased in form of screenshots in the appendix of this report in figures
9.8, 9.9, and 9.10. These figures display the function signatures and first few
lines; the entire code can be viewed from source code.

The tool provides an an abstract java class that could be extended to
implement an algorithm of choice. The instance of the algorithm of choice is
created and used to compare models as represented abstractly in Algorithm
1.

The compareModels function expects a hashmap (config) that contains in-
formation about the granularity of comparison and choice of algorithm. The
hashmap can contain the configuration variables lisetd in table 9.1. Based
on the choice of algorithm, if implemented in the tool, the relevant instance
of the class is initialized; that instance is named as ”alg”. The function
”getClassLevelMetrics” is called that uses the instance of the algorithm to
compute the ven diagram for each of the elements of the model. The ven
diagram provides information about the true positives, false positives, and
false negatives. if the MODEL-LEVEL-COMPARISON-DERIVED-FROM-
CLASS-LEVEL-COMPARISON 1 configuration variable (refer to appendix
table 9.1) is set to True then the classLevelMetrics and the Ven Diagram
for enumerations (computed separately because they are present at the root
of the model instead of being part of a class), are used to generate the the
model level metrics; else, the model level metrics are generated by comparing

1The configuration variable is used as a short form ”aggregateClassLevelMetrics” in
Algorithm 1 due to space limitations

36

model elements on model level. We have not described the functions ”get-
ConfusionMatrixForAllElements()” and ”getMLM(clm, VDEnum”)because
they are trivial.

37

Algorithm 1 Compare Models using Algorithm of Choice

conf : configuration bM : baseModel
pM : predictedModel alg: Algorithm of choice
V D: Ven Diagram Att: attribute
Op: operation ref : reference
Sup: supertype enum: enumeration

CLM : classLevelMetrics MLM : modelLevelMetrics

1: function compareModels(conf, bM, pM)
2: alg ← conf.alg ▷ of Type AbstractClassComparisonService
3: V DEnum← alg.getV DEnum(bM.Enum, pM.Enum)
4: clm← getCLM(bM.Classes, pM.Classes, alg, conf)
5: if conf.aggregateClassLevelMetrics is True then
6: mlm← getMLM(clm, V DEnum)
7: else
8: mlm← getMLM(bM, pM)
9: end if

10: end function
11:

12: function getCLM(bc, pc, alg, conf)
13: V DAtt← alg.getV DAtt(bc.Att, pc.Att) if conf.Att is true
14: V DOp← alg.getV DOp(bc.Op, pc.Op) if conf.Op is true
15: V DRef ← alg.getV DRef(bc.Ref, pc.Ref) if conf.Ref is true
16: V DSup← alg.getV DSup(bc.Sup, pc.Sup) if conf.Sup is true
17: classLevelMetrics← getConfusionMatrixForAllElements()
18: return classLevelMetrics
19: end function
20: function getMLM(bm, pm)
21: V DAtt← alg.getV DAtt(bm.Att, pm.Att) if conf.Att is true
22: V DOp← alg.getV DOp(bm.Op, pm.Op) if conf.Op is true
23: V DRef ← alg.getV DRef(bm.Ref, pm.Ref) if conf.Ref is true
24: V DSup← alg.getV DSup(bm.Sup, pm.Sup) if conf.Sup is true
25: modelLevelMetrics← getConfusionMatrixForAllElements()
26: return modelLevelMetrics
27: end function

38

The algorithm of choice can be implemented such that it extends from the
abstract class defined in figure 4.8. Each algorithm should contain functions
to extract venDiagrams for the elements as used on lines [8 - 11] in Algorithm
1. This section describes 2 algorithms that have been integrated as part of
the tool.

6.1 Hashing Based Comparison

The hashing based algorithm has been implemented as an extension of the
abstract model comparison class (figure 1). The inspiration for this algorithm
comes from the Xiao He’s [12] paper; an extension of EMF-Compare. Our
algorithm computes the venn diagrams for each of the following elements;
classes, references, attributes, operations, superTyes, and Enums. VennDi-
agram is a data structure (implemented as a DTO (Data Transfer Object))
containing a triple such that:

Venn Diagram = <onlyInModel1, intersection, onlyInModel2>

The pseudocode in 2 details the steps to compute the venn diagrams provided
with two arrays of the same types of elements. At first, a hash value of each of
the elements is computed, which is use to index the element. This is followed
by finding pairs of elements that have the maximum similarity score; these
pairs are included in the intersection section of the venn diagram. For the
elements in model 1 that were not paired with any element in model 2; are
included in the set of elements only in model 1, and vice versa.

The algorithm used to compute similarity is detailed in pseudocode 3.
The ”computeSimilarity” function computes a dot product of the two hash
values. It expects the hash to be a 64 bit binary value. The usage of this
function can be seen in algorithm 2. The ”computeHash” function takes
input an element and computes a sum of the hash values of each of its
features. The function ”getHashValue” is ued to compute a 64 bit binary
hash of each individual feature in the element. If the feature is a text-based
feature then the ”hashNGram” function is used to compute the 64 bit binary
hash for that feature value. This technique is inspired from the ”hashNGram”
function proposed by Xiao He in [12]. The hashNGram function breaks the
string into bi-grams and for each bi-gram computes a 64 bit binary hash; these
hash values are summed up to get a 64-bit hash value for the feature. We
have introduced a variation to accommodate for classes that are composed of

39

only 1 letter, for example ”public class A ”. We have added an if condition
to check if such is the case, then the hashCode for that letter is returned
instead of computing the bigrams.

40

Algorithm 2 Get Venn Diagram

conf : configuration V D: Ven Diagram
DP : DotProduct thv: totalHashValue
em1: elementsOnlyInModel1 em2: elementsOnlyInModel2

HiM1: hashIndexModel1 HiM2: hashIndexModel2

1: function getVD(elementsM1, elementsM2, conf)
2: venDiagram← triple < intersection, em1, em2 >
3: HiM1, HiM2← {}
4: for i← 1 in elementsM1 do
5: HiM1.put(computeHash(i, conf), i)
6: end for
7: for i← 1 in elementsM2 do
8: HiM2.put(computeHash(j, conf), j)
9: end for

10:

11: for i← 1 in HiM1.keys() do
12: maxSimilarity ← −1
13: for j ← 1 in HiM2.keys() do
14: similarity ← computeSimilarity(i, j)
15: maxSimilarity ← max(similarity,maxSimilarity)
16: end for
17: if maxSimilarity >= conf.hashingThreshold then ▷ match found
18: HiM1.keys().remove(i)
19: HiM2.keys().remove(j)
20: venDiagram.intersection.add(HiM1.get(i))
21: else
22: venDiagram.em1.add(HiM1.get(i))
23: end if
24: end for
25:

26: for j ← 1 in HiM2.keys() do ▷ Unmatched elements in model2
27: venDiagram.em2.add(HiM2.get(j))
28: end for
29: return venDiagram
30: end function

41

Algorithm 3 Similarity Computation

thv: totalHashValue DP : DotProduct

1: function hashNGram(featureValue)
2: hashV alue← 0;
3: if featureV alue.length < 2 then
4: return featureV alue.hashCode()
5: end if
6: for i← 0 in featureValue.length(() do
7: String bigram= input.substring(i, i + 2);
8: hashValue += (long) bigram.hashCode();
9: end for

10: return hashV alue
11: end function
12:

13: function computeHash(element, conf)
14: thv ← 0
15: for i← 1 in elementNamesToBeCompared do
16: if conf.i is True then
17: if element.i is text based then
18: thv ← thv + hashNGram(element.i)
19: else
20: thv ← thv + getHashV alue(element.i)
21: end if
22: end if
23: end for
24: return thv
25: end function
26:

27: function computeSimilarity(hash1, hash2)
28: dp← DP (hash1, hash2)
29: return dp
30: end function

42

6.2 Digest Based Comparison

The digest based algorithm has been implemented in a similar way to that
of the hashing based algorithm except for the matching process; where the
elements’ raw feature values are matched instead of their hash. If an exact
match is found; the elements are paired together.

6.3 Semantic Similarity

This algorithm defines a class SemanticSimilarity to compute the semantic
similarity between two emfatic files. The process begins by extracting and
tokenizing text from the given code using NLTK, then removes packages,
namespace declaration and comments. Package declerations are removed
because the focus of the tools is to find semantic similarity between class
diagrams; it is not necessary for the two models to have the same package
structure for them to be semantically similar. The algorithm tokenizes the
remaining text and converts it into a list of tokens. Then, it uses TF-IDF
(Term Frequency-Inverse Document Frequency) to calculate the importance
of each word in the documents and obtains word embeddings using pre-
trained Word2Vec vectors from the GoogleNews-vectors-negative300 word
embedding model. We have provided support for 2 models; glove6b50d and
GoogleNews-vectors-negative300 that can be configured from the environ-
ment variable of the api. These embeddings are weighted by the TF-IDF
scores to get a weighted average embedding for each document. Finally, the
cosine similarity between the embeddings of the original and predicted code
files is computed to determine their semantic similarity, which is then re-
turned as a score. The implementation of the semantic similairty algorithm
can be viewed in the trivial code presented in appendix figure 9.17.

43

Chapter 7

Case Study

This chapter contains a case study carried out using Comparit. The mo-
tivation for the case study is to compare the effectiveness of Modisco 1; a
reverse engineering tool. We will manually create the ecore model for the
ecommerce-backend project on github 2 using EMF and use it as a baseline
for comparison.

7.1 Source Code and its Ecore Model

The project is built on Spring Boot3, a popular framework for Java back-
end development, making it an excellent platform for demonstrating reverse
engineering testing tools.

The widespread use and inherent complexity of the E-Commerce domain
make it an ideal candidate for showcasing the capabilities of a reverse en-
gineering algorithm. The selected case study incorporates a wide variety of
Java elements including attributes, operations, references, and superTypes.
This diversity provides a thorough basis for evaluating how well our model
comparison tool is able to determine the differences with regards to these
elements between the baseline and reverse engineered models.

The core domain model classes in our E-Commerce application include
Order, Product, and Category, which represent key elements of the E-
Commerce domain, such as product listings, customer orders, and categories.

1https://github.com/atlanmod/modisco
2

3https://spring.io/projects/spring-boot

44

Figure 7.1 presents the conceptual domain model using a class diagram.

Figure 7.1: Ecommerce Application Baseline Model

Within the code, classes are annotated with Spring MVC and JPA anno-
tations to define their behavior and persistence characteristics. For example,
the Product class is annotated with @Entity and @Data, marking it as a
persistent entity and auto-generating boilerplate methods like getters and
setters.

The application includes Spring Boot controllers that handle HTTP re-
quests related to orders and categories. For example, the OrdersController
provides endpoints for retrieving orders, while the CategoriesController

manages category-related actions. Additionally, repository interfaces such
as OrderRepository and CategoryRepository define methods for interact-
ing with the underlying database, utilizing Spring Data JPA to streamline
data access. The figure also includes the JpaRepository interface, which is
extended by these repository interfaces. While the class diagram omits the
main entry point and test class of the Java project, it is important to note
that the CategoriesController class makes use of the ResponseEntity

class provided by Spring Framework.

45

7.2 Modisco Model

Figure 7.2 shows the ecore model extracted by Modisco. Both the baseline
and modisco models contain similar class structures. As can be seen from the
ecore model extracted by Modisco; it has correctly identified the following
classes; CategoriesController, OrdersController, ProductMutationResolver,
ProductQueryResolver, Category, Order, Product, CategoryRepository, Or-
derRepository, ProductRepository.

Figure 7.2: Ecore Model Extracted by Modisco

The baseline includes two additional abstract classes: GraphQLMutation-
Resolver and GraphQLQueryResolver, which are not explicitly defined in the
predicted model. However, in the predicted model, both ProductMutation-
Resolver and ProductQueryResolver extend other classes (orgspringframe-
workhttpResponseEntity and orgspringframeworkwebbindannotation), sug-
gesting an alternative abstraction.

The attributes are mostly captured in both models, but there are some
significant differences in how they are represented. The matching attributes
class-wise are listed below:

• Category Class: id, categoryName.

• Product Class: id, productName, description, price, createdData

• Order Class: id, creationDate.

In the predicted model, many attributes are marked as ref even when they
are clearly simple types (e.g., int, String, double). This includes attributes
like id and categoryName in the Category class and creationDate in the

46

Order class. The ground truth uses the datatype EDate for dates, while
the predicted model uses Date, which is inferred from java.util.Date. The
predicted model uses a simplified approach to the attributes by setting the
”ordered” feature to false (observed by inspecting ecore file) for operations,
references and attributes, which doesn’t exist in the ground truth.

References have been mostly captured correctly in Modisco’s model. The
matching references are; Category.products referencing Product,
Order.products referencing Product, Product.category referencing Category,
and Product.orderItems referencing Order.

Most operation names are accurately captured, but there are some changes
in return types and operation parameters. The operations getCategories(),
getAll(), saveProduct(Product product), updateProduct(Product product),
deleteProduct(int id) are well captured. The operations in ProductMuta-
tionResolver and ProductQueryResolver mostly align, although with some
differences in the return types. In Modisco’s model, the return type for
getCategoryById(int id), saveCategory(Category category), and other sim-
ilar methods in CategoriesController is RequestMapping instead of Respon-
seEntity, as defined in the baseline model. The operation ProductQueryRe-
solver.getProductById() in the ground truth does not take any parameters,
while in the predicted model, it takes int id as a parameter.

Since the classes GraphQLMutationResolver, GraphQLQueryResolver and
JPA Repository were not captured; 2 of the superTypes present in the base-
line model were not included in Modisco’s model.

7.3 Comparison using Comparit

In this section, we will compare the ecore model generated by Modisco with
the baseline ecore model. We will try various combinations of configurations
to see how that affects the desired outcome.

The results of matching using hashing algorithm with a threshold of 0.95
and all the rest configuration variables (refer to appendix table 9.1) to true,
can be seen in figures 7.3, 7.4, and 7.5.

47

Figure 7.3: Model Level Metrics. hashing=0.95, rest config variables set to
True

48

Figure 7.5: Ven Diagrams for Elements (2/2). hashing=0.95, rest config
variables set to True

Figure 7.4: Ven Diagrams for Elements (1/2). hashing=0.95, rest config
variables set to True

By looking at the ven diagrams, it can be inferred that attributes, refer-
ences, and superTypes are the major players in bringing the precision down
for the model. There are no matching sueprtypes because they were misiden-
tified by Modisco as discussed in the manual insepction of the two models

49

earlier in this chapter. One of the resaons for the absence of any true positives
in attributes is the fact that Modisco idenitified the primitive types as refer-
ences; and hence resulting in an increase false positive values for references.
No true positives in the references was a result of the fact that modisco had
set the ”ordered” feature for references to false. To investigate this further,
we set the configuration variable ”ordered” for attributes and references to
false; which means the comparator will ignore that element feature when
performing the comparison. The results are presented in figures 7.6 and 7.7.

Figure 7.6: Model Level Metrics. hashing=0.95, order=false for references
and attributes, Rest config variables set to True

50

Figure 7.7: Venn Diagrams hashing=0.95, order=false for references and
attributes, Rest config variables set to True

51

The new configuration resulted in improved metrics. Now, we can see
1 true positive attribute and 4 true positive references. There seem to
be 3 false negative operations; that is because the parameters did not ac-
curately match with the baseline model as described in the manual in-
spection. If we wish to ignore the operation parameters, we can set the
INCLUDE-OPERATION-PARAMETERS to false. The results are depicted in fig-
ures 7.8 and 7.9.

Figure 7.8: Model Level Metrics. hashing=0.95, order=false for references
and attributes, include operation parameters=False. Rest config variables set
to True

52

Figure 7.9: Venn Diagrams. hashing=0.95, order=false for references and
attributes, include operation parameters=False. Rest config variables set to
True

53

We can conclude that one of the key factors contributing to Modisco’s
lower accuracy was its handling of primitive types as references rather than
attributes. While this impacted the syntactic similarity score, it’s worth
noting that the semantic similarity score remained high. This highlights the
tool’s strength in not overly penalizing minor syntactic discrepancies, as long
as the underlying meaning stays consistent.

54

Chapter 8

Evaluation

8.1 Methodology

To validate the correctness of the model matching algorithms used in the
tool, we prepared a benchmark dataset containing triples; base ecore model,
mutant, and their similarity metrics. The benchmark dataset’s structure is
described in detail in section 8.2.

The model comparison tool was then executed with difference combina-
tions of configuration to extract the similarity metrics for each ecore model
pair and compared against the given similarity metrics to gauge the accuracy
of the tool. The results are presented in 8.3.

8.2 Benchmark Dataset

The preliminary preparation of the dataset involves downloading the mod-
elset zip folder 1. We have used the Dec 14, 2023 release of modelset (size:
104MBs). Then we extract the all the ecore models present in the repo-ecore-
all folder.

For each ecore model, 10 mutants were generated using YAMTL. The
details of each mutant can be found in the table 8.2; each entry represents
the percentage of similar element tags between the base model and predicted
model. The mutants cover edge cases and one hybrid case described as
”mutant 10” in the table. For each mutant; we computed the percentage

1https://github.com/modelset/modelset-dataset/releases

55

of false negatives by subtracting the specified percentage of similar elements
from 100. For example, if we want 90 percent of operations to be true
positives, then the number of false negatives that would be generated for
that mutant would be 10 percent (100 - 90 = 10) of the total operations.
The false negatives are generated in a way such that the elements in the base
model are kept intact; and no corresponding element is generated for the
mutant. However, to avoid having equal precision and recall, we generate
a non-matching element in the mutant for 40 percent of the false negatives.
This introduces a non-zero value for false positives.

Figure 8.1 (Screenshot taken from the Ui for evaluation results; as de-
scribed in section 8.4) depicts the distribution of precision, recall, and f1-
score across the model-pairs used for evaluation. It can be seen that the
distribution of precision and recall differs, indicating that there is a variety
of false positive and false negative values across the model pairs.

Figure 8.1: Benchmark Dataset Metrics Distribution

56

Figure 8.2: Table for description of mutants. Each entry represents the
percentage of similar elements between base model and predicted model.

Mutant Classes Attributes Operations References

1 100 100 100 100
2 0 0 0 0
3 100 100 0 0
4 100 0 0 100
5 100 0 100 0
6 100 100 100 0
7 100 100 0 100
8 100 100 0 100
9 100 0 100 100
10 100 70 90 80

When processing ecore models from the modelset dataset and generating
mutants, we only included models that are greater than or equal to 20kbs
in file size. This ensured that the models are big and hence have more
variety when it comes to model elements; attributes, references, operations,
parameters, supertypes and enumerations. Figure 8.3 showcsaes the diversity
of the size of models in the benchmark dataset. The distribution of model
elements in the benchmark dataset can be seen from a bird’s eye view in
figure 8.4; each point in the box plot represents the total number of elements
for a model present in the dataset.

57

Figure 8.4: Model Elements Distribution

Figure 8.3: Models Size Distribution

The model comparator was executed on the benchmark dataset with four
different configurations:

• Using Hashing based algorithm with a hashing threshold of 0.95 and
setting the MODEL-LEVEL-COMPARISON-DERIVED-FROM-CLASS-
LEVEL-COMPARISON to true

• Using Hashing based algorithm with a hashing threshold of 0.95 and

58

setting the MODEL-LEVEL-COMPARISON-DERIVED-FROM-CLASS-
LEVEL-COMPARISON to false

• Using Digest based algorithm and setting the MODEL-LEVEL-COMPARISON-
DERIVED-FROM-CLASS- LEVEL-COMPARISON to true

• Using Digest based algorithm and setting the MODEL-LEVEL-COMPARISON-
DERIVED-FROM-CLASS- LEVEL-COMPARISON to false

The results of the evaluation are reported in section 8.3.

8.3 Results

Figure 8.5 reports the mean of absolute errors and MSQE (Mean squared
error) for the four configurations.

The mean of absolute errors is computed using the following formula:∑
|expected f1 score− obtained f1 score|

totalModelPairs
The MSQE is computed using the following formula:∑

|expected f1 score− obtained f1 score|2

totalModelPairs
The figure displays four bar graphs comparing ther results of different con-

figurations ,in terms of their ”Mean” and ”Mean Squared Error (MSQE)”,
for the two components of the model comparator: Syntactic Comparator
and Semantic Comparator. Each graph has bars representing four config-
urations: digest without aggregate, digest with aggregate, hashing.95 without
aggregate, and hashing.95 with aggregate. The vertical axis shows the error
values, while the horizontal axis lists the configurations, with labels rotated
for readability.

Syntactic Comparator Error

• Mean of Syntactic Comparator Error: The hashing.95 with ag-
gregate configuration has the highest mean error (552.217µ), followed
by digest with aggregate (369.15µ). The configurations digest without
aggregate and hashing.95 with aggregate exhibit the lowest mean errors
(72.36µ and 351.69µ, respectively).

59

• MSQE of Syntactic Comparator Error: Similarly, hashing .95 with
aggregate and digest with aggregate yield the highest MSQE (14.12µ
and 13.47µ). The hashing.95 without aggregate has the lowest MSQE
(1.68µ), while digest without aggregate has an intermediate MSQE
(4.47µ).

Semantic Comparator Error

The semantic copmarator doesn’t take into account the configuration and
hence no change in error is observed upon changing the configuration.

• Mean of Semantic Comparator Error: All four configurations
show very similar mean error values (0.153), with slight variations
but no significant differences.

• MSQE of Semantic Comparator Error: The MSQE results are
also similar across all configurations, ranging around 0.048, with min-
imal differences between them.

The syntactic comparator’s mean of absolute error decreased from 522.13µ
to 369.15µ and the MSQE decresed from 13.12µ to 1.61µ as a result of setting
the MODEL-LEVEL-COMPARISON-DERIVED-FROM-CLASS-LEVEL-COMPARISON to
”false” while keeping the hashing threshold same (0.95). AFter inspecting the
individual results of model comparison, it was observed that the supertypes
are duplicated when the class level metrics are being aggregated. This is be-
cause 1 class can be extended my multiple classes. The same argument holds
explains the fall in error for the digest based algorithm upon turning setting
the MODEL-LEVEL-COMPARISON-DERIVED-FROM-CLASS-LEVEL-COMPARISON to
”false”.

60

Figure 8.5: Bar Chart representing Errors

Scatter Plot Analysis

The figure 8.6 consists of four scatter plots showing the relationship between
Model Size and Time (s) for Syntactic Comparison using different
configurations of hashing and digest methods, with and without aggregation.

Hashing with Aggregation

This plot represents the time taken for syntactic comparison using hashing
with aggregation. As model size increases, the time also increases, showing
a positive correlation.

61

Hashing without Aggregation

This plot shows the time for syntactic comparison using hashing without
aggregation. Similar to the previous plot, there is a positive correlation
between model size and comparison time, but the increase in time is more
significant than in the case with aggregation.

Digest without Aggregation

This plot illustrates the comparison time when using digest based algorithm
without aggregation. There is a positive relationship between model size and
comparison time, but the time values are generally lower than in the hashing
configurations.

Digest with Aggregation

This plot shows the syntactic comparison time using the digest based al-
gorithm with aggregation. As model size increases, there is again a clear
positive correlation with time.

Conclusively, in all plots, model size has a clear positive correlation with
comparison time, indicating that larger models require more time for syn-
tactic comparison. However, the configuration with hashing (without ag-
gregation) produces the highest comparison times, while the digest method
results in generally lower comparison times. It is speculated that a steeper
rise in time taken for execution is higher for hashing based algorithm because
of the cache. The comparison was executed in one go, and thus the cache
bloated. This could be improved by implementing a more intelligent caching
mechanism that deletes less frequently used cached values. We have listed
this improvement in the future works section.

62

Figure 8.6: Scatter Plot

8.4 Steps to Reproduce Evaluation Results

The modelset dataset and its corresponding generated mutants amount to
a large file size and hence are not included in the source code. Instead, the
data is located in the artifacts folder for the tool that can be found. here2.

The benchmark dataset can be reproduced and re-evaluated by following
the steps below:

• Download the modelset zip folder and copy it in functional-tests/modelset

2https://uniofleicester-my.sharepoint.com/:f:/g/personal/jm982_student_

le_ac_uk/Eq8ttmKwGiZGhUX8Ujdr75IBJwI2soEHRAxqw-IaRO9nCw?e=R9mOxc

63

folder

• Create a virtual environment, install dependencies and run migrate.py
script. This will generate a folder named ”ecore models modelset”

• copy the folder "ecore_models_modelset" in functional-tests/

• Go to syntactic-comparator/src/main/java/com/mdre/evaluation/
services/modelComparisonService/ModelMutator.groovy and sep-
cify the directory of "ecore_models_modelset" folder inside the ”run()”
function.

• run ”./gradlew runModelMutatorJavaWrapper: This will run the model
mutator that will generate mutants within the ”ecore models modelset”
fodler.

• To execute Comparit on the generated dataset, create a virtual env
inside functional-tests folder and install dependencies using require-
ments.txt file. Then run functional-tests/api-tests.py. This should take
10-15 mins depending on your system’s capacity. This script runs sanity
tests for the available APIs for ecore model comparison, then executes
model comparison for each model with its mutants. For example, if
we have 5 models then the comparison would run 50 times (10 times
for each model with its 10 mutants). Once the execution of this script
finishes, the following csv files will be produced:

– evaluation results digest true.csv: This file will contain the resutls
for the comparison with the MODEL-LEVEL-COMPARISON-
DERIVED-FROM-CLASS- LEVEL-COMPARISON (refer to ap-
pendix table 9.1) flag set to True and USE-HASHING set to false.
This implies that the comparator has used the digest based com-
parison algorithm 6.2 and carried out the model level comparison
by aggregating the class level comparison results.

– evaluation results digest false.csv: This file will contain the re-
sutls for the comparison with the MODEL-LEVEL-COMPARISON-
DERIVED-FROM-CLASS- LEVEL-COMPARISON flag set to False
and USE-HASHING set to false. This implies that the compara-
tor has used the digest based comparison algorithm 6.2 and carry
out the model level comparison seperately instead of aggregating
the class level comparison results.

64

– evaluation results hasing .95 aggregate true.csv: This file will con-
tain the resutls for the comparison with the MODEL-LEVEL-
COMPARISON-DERIVED-FROM-CLASS- LEVEL-COMPARISON
flag set to True and USE-HASHING set to true. This implies that
the comparator will use the hashing based comparison algorithm
6.1 with a hashing threshold of 0.95 and carry out the model level
comparison by aggregating the class level comparison results.

– evaluation results hasing .95 aggregate false.csv: This file will con-
tain the resutls for the comparison with the MODEL-LEVEL-
COMPARISON-DERIVED-FROM-CLASS- LEVEL-COMPARISON
flag set to False and USE-HASHING set to true. This implies that
the comparator will use the hashing based comparison algorithm
6.1 with a hashing threshold of 0.95 and carry out the model level
comparison seperately instead of aggregating the class level com-
parison results.

• To view the visualizations for results, navigate to functional-tests/
and execute ”streamlit run evaluation ui.py”. This will open a user-
interface providing insights into the evaluation results. The summary
of evaluation results are presented earlier in Section 8.3.

65

Chapter 9

Conclusion Future Works

In this paper, we proposed an IDE-agnostic model comparison tool that is
highly extensible, facilitating the implementation of various model compari-
son algorithms. We have demonstrated its capabilities by implementing both
digest-based and hashing-based comparison algorithms. The tool enables
users to specify the granularity of the comparison process, offering greater
control and flexibility. We evaluated the tool using a benchmark dataset cre-
ated by applying model transformations to generate mutants for the modelset
dataset.

Moving forward, we aim to enhance the tool in several key areas. First,
we plan to expand its compatibility to support additional popular model-
ing languages beyond Ecore, Emfatic, and UML, such as PlantUML and
Moose. This will increase the tool’s versatility and applicability across di-
verse modeling environments. Second, we intend to introduce functionality
for identifying matched and unmatched model elements, providing users with
more granular insights into their model comparisons.

To further improve the user experience, we will integrate a syntax high-
lighter to validate model syntax and pinpoint specific line numbers causing
issues. Currently, the tool does not handle syntactically invalid models well,
and adding this feature will significantly enhance usability.

We also aim to address performance concerns by enabling parallel process-
ing of models. This can be achieved by allocating separate nodes for process-
ing different sets of model elements, thereby distributing the workload and
reducing memory consumption associated with syntactic comparison. Addi-
tionally, optimizing the caching mechanism is a priority. The current system
experiences cache bloating and increased memory usage during bulk compar-

66

isons of large models. By refining the caching strategy, we can improve both
efficiency and scalability.

To showcase the applicability and usability of the tool in the software
industry, we intend to include a case study where we will use Comparit to
compare meta models of different versions of a Java project. For example,
using two versions of the same Java project from two different releases.

Currently, the tool only incorporates the configuration specified by the
user when computing syntactic similarity. Going further, it would be a nice
addition to the tool to specify configuration for semantic similarity; which
would include the elements to be included and the embedding model to be
used.

Lastly, we plan to leverage Large Language Models (LLMs) for semantic
model comparison. The idea is to utilize LLMs to analyze metamodels and
perform comparisons, providing a more nuanced and context-aware analysis
of model similarities and differences. This approach promises to enhance
the tool’s ability to handle complex semantic comparisons and offer deeper
insights into model relationships.

67

Bibliography

[1] Lorenzo Addazi and Antonio Cicchetti. Systematic evaluation of model
comparison algorithms using model generation. The Journal of Object
Technology, 19:11:1, 01 2020.

[2] Mohammad Alwanain, Behzad Bordbar, and Julian K. F. Bowles. Auto-
mated composition of sequence diagrams via alloy. In Proceedings of the
2014 2nd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), pages 384–391, 2014.

[3] Nicolas Anquetil, Anne Etien, Mahugnon H. Houekpetodji, Benoit Ver-
haeghe, Stéphane Ducasse, Clotilde Toullec, Fatiha Djareddir, Jerôme
Sudich, and Moustapha Derras. Modular moose: A new generation of
software reverse engineering platform. In ICSR: International Confer-
ence on Software and Software Reuse, 2020.

[4] Omar Badreddin, Timothy C. Lethbridge, and Andrew Forward. A
novel approach to versioning and merging model and code uniformly. In
Proceedings of the 2014 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), pages 254–
263, 2014.

[5] Steve Barrett, Dirk Sinnig, Philippe Chalin, and Graham Butler. Merg-
ing of use case models: semantic foundations. In Proceedings of the
2009 Third IEEE International Symposium on Theoretical Aspects of
Software Engineering, pages 182–189. IEEE, 2009.

[6] Artur Boronat. Expressive and Efficient Model Transformation with an
Internal DSL of Xtend. 10 2018.

68

[7] Andrei Z. Broder. On the resemblance and containment of documents. In
Proceedings of the International Conference on Compression and Com-
plexity of Sequences, pages 21–29, 1997.

[8] Eclipse Foundation. Eclipse Foundation website. https://eclipse.

dev/modeling/mdt/?project=uml2. Accessed: 2024-06-28.

[9] Eclipse Foundation. Eclipse modeling framework (emf), 2024. Accessed:
2024-08-12.

[10] Mathieu Foucault, Frédéric Barbier, and Denis Lugato. Enhancing ver-
sion control with domain-specific semantics. In Proceedings of the 5th
International Workshop on Modeling in Software Engineering (MiSE
’13), pages 31–36, Piscataway, 2013. IEEE Press.

[11] V. Garćıa-Dı́az, B.C. Pelayo G-Bustelo, O. Sanjuán-Mart́ınez, E.R. Nú
nez Valdez, and J.M. Cueva Lovelle. Mctest: Towards an improvement
of match algorithms for models. IET Software, 6(2):127–139, April 2012.

[12] Xiao He, Yi Liu, and Huihong He. Accelerating similarity-based model
matching using dual hashing. 2024. Received: 18 April 2023 / Revised:
14 December 2023 / Accepted: 14 March 2024.

[13] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and
Richard F. Paige. Different models for model matching: An analy-
sis of approaches to support model differencing. In Proceedings of the
2009 ICSE Workshop on Comparison and Versioning of Software Mod-
els, pages 1–6. IEEE Computer Society, 2009.

[14] Antonio Cicchetti Lorenzo Addazi. Using benji to systematically evalu-
ate model comparison algorithms. 2020.

[15] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Cddiff: seman-
tic differencing for class diagrams. In Mira Mezini, editor, ECOOP 2011–
Object Oriented Programming, pages 230–254, Berlin, 2011. Springer.

[16] PlantUML. Plantuml: Open-source tool for drawing uml diagrams,
2024. Accessed: 2024-08-12.

69

[17] Junaid Rashid, Waqar Mehmood, and Muhammad Wasif Nisar. A sur-
vey of model comparison strategies and techniques in model driven engi-
neering. International Journal of Software Engineering and Technology
(IJSET), 1(3):165–176, December 2016. Received Jun 12th, 2016, Re-
vised Aug 20th, 2016, Accepted Aug 26th, 2016.

[18] Juan E. Rivera and Antonio Vallecillo. Representing and operating with
model differences. In Robert F. Paige and Bernhard Meyer, editors,
Objects, Components, Models and Patterns, pages 141–160. Springer,
Berlin, 2008.

[19] Caitlin Sadowski and Greg Levin. Simhash: hash-based similarity de-
tection. Technical report, Google Inc., 2007.

[20] Ferenc A. Somogyi. Merging textual representations of software mod-
els. In T. Kékesi, editor, The Publications of the MultiScience—XXX.
microCAD International Multidisciplinary Scientific Conference. Multi-
Science, Miskolc, 2016.

[21] Ferenc A. Somogyi and Marcell Asztalos. Formal description and ver-
ification of a text-based model differencing and merging method. In
Proceedings of the 6th International Conference on Model-Driven En-
gineering and Software Development–Volume 1: AMARETTO, pages
657–667. INSTICC, SciTePress, 2018.

[22] Ferenc A. Somogyi and Miklós Asztalos. Systematic review of matching
techniques used in model-driven methodologies. Software and Systems
Modeling, 2019.

[23] Ferenc Attila Somogyi. Investigating Text-Based Domain-Specific
Modeling Techniques (Szöveg alapú szakterületi modellezési módszerek
vizsgálata). Ph.d. dissertation, Budapest University of Technology and
Economics, Budapest, 2022. Associate Professor.

[24] S. Uhrig and F. Schwägerl. Tool support for the evaluation of matching
algorithms in the eclipse modeling framework. In Proceedings of the
1st International Conference on Model-Driven Engineering and Software
Development—Volume 1: MODELSWARD, pages 101–110. INSTICC,
SciTePress, 2013.

70

[25] Mark van den Brand, Albert Hofkamp, Tom Verhoeff, and Zvezdan
Protić. Assessing the quality of model-comparison tools: a method and
a benchmark data set. In Proceedings of the 2nd International Workshop
on Model Comparison in Practice, IWMCP ’11, page 2–11, New York,
NY, USA, 2011. Association for Computing Machinery.

[26] Ronald van Rozen and Tom van der Storm. Origin tracking+text dif-
ferencing=textual model differencing. In Proceedings of the 8th Inter-
national Conference on Theory and Practice of Model Transformations,
volume 9152 of Lecture Notes in Computer Science, pages 18–33, New
York, 2015. Springer.

71

Appendix

Table 9.1: Model Comparison Configuration Properties

Property Type Default
Value

Description

USE-HASHING boolean true Whether to use hashing in the
comparison

INCLUDE-
DEPENDENCIES

boolean true Whether to include dependencies
in the comparison

MODEL-LEVEL-
COMPARISON-
DERIVED-FROM-CLASS-
LEVEL-COMPARISON

boolean true Model-level comparison derived
from class-level comparison. If
false, elements will be compared
on model level

HASHING-THRESHOLD number 0.5 The threshold for hashing
similarity

INCLUDE-ENUMS boolean true Whether to include enums in the
comparison

INCLUDE-ENUM-NAME boolean true Whether to include enum names
in the comparison

INCLUDE-CLASS-
ATTRIBUTES

boolean true Whether to include class
attributes in the comparison

INCLUDE-CLASS-
OPERATIONS

boolean true Whether to include class
operations in the comparison

INCLUDE-CLASS-
PARAMETERS

boolean true Whether to include class
parameters in the comparison

INCLUDE-CLASS-
REFERENCES

boolean true Whether to include class
references in the comparison

72

Property Type Default
Value

Description

INCLUDE-CLASS-
SUPERTYPES

boolean true Whether to include class
supertypes in the comparison

INCLUDE-ATTRIBUTE-
NAME

boolean true Whether to include attribute
names in the comparison

INCLUDE-ATTRIBUTE-
CONTAINING-CLASS

boolean true Whether to include the class
containing the attribute in the
comparison

INCLUDE-ATTRIBUTE-
TYPE

boolean true Whether to include attribute
types in the comparison

INCLUDE-ATTRIBUTE-
LOWER-BOUND

boolean true Whether to include attribute
lower bounds in the comparison

INCLUDE-ATTRIBUTE-
UPPER-BOUND

boolean true Whether to include attribute
upper bounds in the comparison

INCLUDE-ATTRIBUTE-
IS-ORDERED

boolean true Whether to include if the
attribute is ordered

INCLUDE-ATTRIBUTE-
IS-UNIQUE

boolean true Whether to include if the
attribute is unique

INCLUDE-
REFERENCES-NAME

boolean true Whether to include reference
names in the comparison

INCLUDE-
REFERENCES-
CONTAINING-CLASS

boolean true Whether to include the class
containing the reference in the
comparison

INCLUDE-
REFERENCES-IS-
CONTAINMENT

boolean true Whether to include if the
reference is containment

INCLUDE-
REFERENCES-LOWER-
BOUND

boolean true Whether to include reference
lower bounds in the comparison

INCLUDE-
REFERENCES-UPPER-
BOUND

boolean true Whether to include reference
upper bounds in the comparison

INCLUDE-
REFERENCES-IS-
ORDERED

boolean true Whether to include if the
reference is ordered

73

Property Type Default
Value

Description

INCLUDE-
REFERENCES-IS-
UNIQUE

boolean true Whether to include if the
reference is unique

INCLUDE-OPERATION-
NAME

boolean true Whether to include operation
names in the comparison

INCLUDE-OPERATION-
CONTAINING-CLASS

boolean true Whether to include the class
containing the operation in the
comparison

INCLUDE-OPERATION-
PARAMETERS

boolean true Whether to include operation
parameters in the comparison

INCLUDE-PARAMETER-
NAME

boolean true Whether to include parameter
names in the comparison

INCLUDE-PARAMETER-
TYPE

boolean true Whether to include parameter
types in the comparison

INCLUDE-PARAMETER-
OPERATION-NAME

boolean true Whether to include the
operation name associated with
the parameter in the comparison

Figure 9.1: Home Page

74

Figure 9.2: Dropdown

75

Figure 9.3: Model Comparison UI

76

Figure 9.4: Model Comparison Results

77

Figure 9.5: Bulk Comparison UI

78

Figure 9.6: Bulk Comparison Results

79

Figure 9.7: Model Conversion Ecore to Emfatic

80

Figure 9.8: Model Comparison Service Implementation (1/3)

81

Figure 9.9: Model Comparison Service Implementation (2/3)

82

Figure 9.10: Model Comparison Service Implenetation (3/3)

83

Figure 9.11: Abstract Class for Syntactic Comparison

Figure 9.12: Digest Based Algorithm Implementation (figure 1/2)

84

Figure 9.13: Digest Based Algorithm Implementation (figure 2/2)

85

Figure 9.14: Hashing Based Algorithm Implementation (figure 2/2)

86

Figure 9.15: Hashing Based Algorithm Implementation (figure 2/2)

87

Figure 9.16: Model Mutator

88

Figure 9.17: Semantic Similarity

89

